语言文学网-学术论文、书评、读后感、读书笔记、读书名言、读书文摘!

语文网-语言文学网-读书-中国古典文学、文学评论、书评、读后感、世界名著、读书笔记、名言、文摘-新都网

写稿机器人:我们的对手还是帮手?(2)

http://www.newdu.com 2017-11-16 科技日报 李钊 参加讨论

    “活人”记者依然是师傅
    当然,纯技术角度做新闻编辑报道还是存在一定局限性。万年进化而成的人脑,绝非几十岁的机器人能轻易代替。
    美国密苏里大学教授唐纳德·里诺兹曾表示,大多数自然语言系统都在简单描述一个事件,但大多数新闻都是描绘性的,甚至是事件驱动型的。人工智能系统在进行新闻创作时需要解决海量技术难题,包括自然语言处理中的自动摘要、文本分类等,还有知识库和知识发现(KDD)等相关技术,比如实体定义、关系抽取、问答系统等。简单来说,就是机器首先需要理解自然语言,然后通过知识管理弄明白新闻中各个要素之间的关系。
    有问题,就有答案。谷歌开源了SyntaxNet,将神经网络和搜索技术结合起来,在解决歧义问题上取得显著进展,该软件能像训练有素的语言学家一样分析简单句法;Facebook推出了文本理解引擎DeepText,每秒能理解几千篇博文内容,语言种类多达20多种,准确度接近人类水平。
    今年6月,人工智能创业公司Maluuba公司发表了一篇关于机器理解的论文,提出了目前最先进的机器阅读理解系统EpiReader,该模型在CNN和童书测试(CBT)两个数据集上的成绩都超过了谷歌DeepMind、Facebook和IBM。EpiReader采取两个步骤来确定问题答案。第一步(Extractor),使用了一个双向GPU逐字阅读故事和问题,接着采用一种类似Pointer Network中的Attention机制在故事中挑选出可能作为答案备选的单词。第二步(Reasoner),这些备选答案被插入(完型填空)式的问题中,构成一些“假设”,接着卷积神经网络会将每个假设与故事中的每个句子加以比较,寻找文本蕴涵(Textual Entailment)关系。简单来说,蕴涵是指,两个陈述具有很强的相关性。因此,最近似故事假设的蕴涵得分最高。最后,将蕴涵得分与第一步得到的分数相结合,给出每一个备选答案正确的概率。
    万小军教授说,记者联系采访对象,观察对方,用心去感受人物,再对大量资料进行整理,做出取舍,对这些复杂细致的情感工作,目前人工智能机器人用深度学习的算法尚不能搞定。由于目前的技术制约,写稿机器人还无法开展自行思考,智能写稿系统在稿件的深度以及稿件个性化上很难在短时间内取得突破。从这个意义上讲,写稿机器人为传统记者节省了大量查阅资料的检索时间,有助于人力记者写出更有深度和富含情感的新闻作品。新闻的字里行间包含着记者的判断、价值观与人文关怀,未来新闻人应该把精力重点放在机器人无法完成的调查性、深度解释性报道上,这样双方才可以真正实现互相补充、相得益彰。
    李磊说,新闻机器人并不会取代记者,相反会成为记者的好帮手。机器人写稿将大大提高记者产出新闻的数量和速度,节省媒体的时间成本和运营成本,提升媒体运营的成本收益率。用户的阅读兴趣呈长尾分布,单篇阅读量高的新闻可以由人力记者来写,但是更大量的单篇阅读量稍低的新闻同样很有价值,由人来写则收益率并不高,而请机器人来写既能弥补这部分阅读需求,又能降低新闻采编的成本,可谓一举多得。
    ——记者观察——
    有了“他”们会更好
    撰写这篇稿件时,我始终无法不去想这样一个问题:写稿机器人来了,自己会不会失业呢?
    当然,目前还不至于。对于媒体,内容是王道,没有深度的媒体人可能会被写稿机器人淘汰,而能做出好内容的深度报道记者则不会。
    人工智能要想达到替代人类的水平,需要好几个阶段的演化。第一阶段首先是在各个垂直领域诞生若干超级智能,比如健康和知识问答领域的“沃森”、围棋领域的“AlphaGo”等。这些垂直超级智能可以在特定领域内展现出远超人类的能力,但是在擅长领域之外没有任何作为。不过,他们将为诞生在所有领域内具备超人能力的终极智能打下初步基础。
    知识改变命运,技术改变世界。相信在以写稿机器人为代表的人工智能技术引领下,全球终将步入一个全新的信息技术时代。凭借不断进步的技术的力量和更多的试验、更早的调整及更好的准备,人类将会建设出一个更加智能化的美好世界。 (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
评论
批评
访谈
名家与书
读书指南
文艺
文坛轶事
文化万象
学术理论