人工智能的春天真的来了吗(2)
http://www.newdu.com 2024/11/28 01:11:49 光明日报 危辉 参加讨论
AlphaGo的成功更像是人工智能领域中基于实例的推理研究,也就是针对当前面临的问题去寻找以往经历过的一个或几个类似的问题,把当时的解决方案拿来做一点适应性修改后应用到新问题上去。当套用到下围棋这个需求上时,这个基于实例的推理过程就可以简化为当前棋局布局与以往某个布局间的相似性匹配和走步方法类推。因此,我们可以说谷歌公司用一种非常恰当的技术解决了一个非常有显示度的问题。但是据此说这个围棋程序能够“学习”和“创新”还是值得商榷的,因为它实现的实质上是同一范畴下的类比。它进行走步决策时完全不理解人类棋手那些“金角银边草肚皮”之类的下棋原则,也不需要懂什么叫“实地”,只是把下围棋当作了一个由一种布局模式推演到另一种布局模式的过程,只知其然而不知其所以然。我们甚至不能认为这是一种智力,充其量是一种强悍的细分记忆力。 人类围棋下输了,那么人类智能就此崩塌了吗?其实人类智能的强项可能不在下围棋这种只有极少数人才能达到高水平的项目上,而在那些应付不可预期的能力上面。例如下图,它显示了一种包装鸡蛋的方式。 假设我是第一次碰到这种方式的包装,且要从这样的盒子里把鸡蛋拿出来,我的第一方案是把鸡蛋抠起来,但我的背景知识马上就告诉我这样做不行,因为鸡蛋会被抠破的。我的第二方案是把整个包装的一边移出桌子的边缘,然后从上往下捅,但细想这也不保险,因为稍不注意就捅到地上去了。由此我立刻想到我们可以从下往上顶鸡蛋,取鸡蛋的问题就顺利解决了。这样的问题看起来不难,几乎人人都能解决,但其奥妙的地方就在于类似这样的问题我们可能是第一次碰到,要解决它时并没有预编程,也就是说我们脑子里没有针对性地储存好如何拿鸡蛋的程序,而是靠灵机决断做到的。大量的背景知识帮了我们大忙,知识引导我们如何去行动。这样的例子有很多,如我们所熟知的乌鸦喝水、曹冲称象、司马光砸缸等,都堪称问题求解的典范。其实这种灵机决断的决策能力才是我们智慧最精华的部分,而对此,人工智能还不知道究竟应该怎样去实现。 最近很多媒体都在讲,人类将有若干工种被人工智能替代,例如司机、秘书、翻译、客服、导游等。那么,事实是否如此?人工智能的春天真的到了吗?笔者认为,这与人工智能早期发展史上经历过的那段热情高涨期一样,过于乐观了。若仔细分析一下,完成某些工作——例如导游——所涉及的那些智能的核心要素,如推理、问题求解、知识库、学习能力、理解能力等,就会发现我们低估了这种任务的复杂性。人工智能界的学者经常告诫自己一句话:“在玩具世界可行的方法未必能够推广到真实世界上去。”这些工作蕴含着大量的不可预期性,我们现有的技术还很难应对得好。 那么,人工智能的现状是什么?我们以前经常讲,人工智能的发展遇到了瓶颈,笔者认为,“瓶颈说”对于人工智能的现状而言还是很高的评价,因为这起码说明我们已经把瓶子的别处都看了个通透,并且能够确定何处才是出路所在了。但事实上,人工智能还达不到这个程度。笔者认为,人工智能的现状是“瞎子摸象”,每个人的观点和方法都没统一,缺乏整体性的认识,因此也就没有长远的解决方案。人工智能界经常引用这样一段话——“飞机能够成功飞上天是因为我们放弃了对鸟的模拟”。既然如此,人工智能为什么非要效仿人类智能机制呢?这句话还引出了一个隐藏于现实之中的弊端,那就是,人工智能界现在已经分不清什么是权宜之计,什么是长久之策了。 (作者单位:复旦大学计算机科学技术学院认知算法模型实验室) (责任编辑:admin) |